

ECONOMICS DEPARTMENT

OCTAVIAN JULA

MICROECONOMICS SEMINAR – WORKING PAPERS – OCTAVIAN JULA

First seminar – English line of Study 2009-2010 October 2009

SOME MATHEMATICAL TOOLS USED IN MICROECONONOMICS

Variation index: $I_x = \frac{X_1}{X_0} \cdot 100$

Relative variation: $I_x = \frac{X_1}{X_0} \cdot 100 - 100 = \frac{\Delta X}{X_0} \cdot 100$

Absolute variation: $\Delta X = X_1 - X_0$

 $\begin{array}{ll} \text{if} & X_1 \!\!>\!\! X_0 \ (\text{so } I_X \!\!>\!\! 1) \!=\!\!\!> \!\! \text{increase} \\ & X_1 \!\!=\!\! X_0 \ (\text{so } I_X \!=\!\! 1) \!=\!\!\!> \!\! \text{constant} \\ & X_1 \!\!<\!\! X_0 \ (\text{so } I_X \!<\!\! 1) \!=\!\!\!> \!\! \text{decrease} \\ \end{array}$

Example:

The nominal salary of an employee was at the beginning of the year 500 euro. On 31st of august the salary was 550 euro.

So, $I_{Si} = \frac{550}{500} = 1.1$

This can be expressed in 3 different ways, but with the same meaning

- The salary increased by 1,1 times (coefficient of variation)

- The salary increased at 110% (variation index)

- The salary increased with 10% (relative variation)

So:

- The salary increased with 50 euro (absolute variation)

1. Same absolute variation determines different relative variations, depending on if there is and increase or a decrease. *Example:*

To the same absolute variation - let's say 250 units - will correspond an relative increase by 25% (for example, from 1000 to 1250 units), and a decrease by only 20% (for a reduction from 1250 to 1000 de units).

- Increase:
$$I_C = \frac{1250}{1000} 100 - 100 = 25\%$$

- Decrease: $I_S = \frac{1000}{1250} 100 - 100 = -20\%$

2. Consequent relative variations will not be summed in order to get the final relative variation for a wider period of time. The final relative variation can be determined as product from variation coefficients from those successive periods:

$$I_{\Sigma} = \prod I_i$$

$$I_{\Sigma} = (\prod I_i) * 100$$

$$I_{\Sigma} = (\prod I_i) * 100 - 100$$

Example:

An increase with 20 % is followed by an increase with 30% so the total growth will not be 50% (30%+50%), but 56% (1,2*1,3*100-100) because the second increase of 30% is calculated also at the initial increase.

- Absolute total increase: (100*1,2)*1,3=120*1,3=156

- Relative total increase:
$$I_C = \frac{156}{100} 100 - 100 = 56 \%$$

3. Other calculus relations:

Arithmetical average:
$$\overline{m} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Growth:
$$p = \frac{x_i}{\sum x_i} 100$$

Arithmetical average with growth:

$$\overline{m} = \frac{\sum x_i p_i}{\sum p_i}$$

n

INTRODUCTION AND UNSOLVED "MISTERIES"

SOLVE THE NEXT EXAMPLES:

1. Establish the relations between the increase and the decrease from the table below:

A relative	Is correspondent	A relative	Is correspondent
increase with	to a decrease with	increase with	to a decrease with
1%	%	50%	%

microeconomics seminar - working papers - Octavian JULA

2%	%	100%	%
3%	%	200%	%
10%	%	300%	%
25%	%	500%	%
33,3%	%	900%	%

2. Establish the relations between the increase and the decrease from the table below:

A relative	Is correspondent	A relative	Is correspondent
increase with	to a decrease with	increase with	to a decrease with
1%	%	20%	%
2%	%	25%	%
3%	%	50%	%
10%	%	100%	%

- 3. The government decided to index the salaries as follows: from 1st of January with 8% and from 1st of October with 12%. What was the total increase in that year?
- 4. The monthly inflation rate was 1% in January, 1% in February and 1% in March. What is the total increase in the first three months of the year?
- 5. A decrease of the production in a certain period by 10% is followed by a next decrease with 20%. What is the total decrease of the production from the initial moment?
- 6. An increase with 60% is followed by a decrease with 40%. What is the evolution of the production?
- 7. An increase with 20% is followed by a decrease with 20% what is the evolution that will result from these elements?

0. 110		1				
t_1	t_2	t ₃	t_4	t ₅	t ₆	
+10%	-10%	+10%	+20%	+15%	-10%	

8. The evolution of a certain price was:

What is the result of this evolution?

9. Represent graphically the next figures:								
Х	1	2	3	4	5	6	7	8
Y_1	10	35	55	70	80	85	85	75
Y_2	80	70	60	50	40	30	20	10

- 10. Represent graphically the function: y = 6 2x. Establish the relation between those two variables.
- 11. Read the data from the next graph and interpret them:

- A) What will be the change for Y (absolute and relative value) in X = 4 in respect with X = 3 ?
 B) What about X = 5 towards X = 4 ?
- 12. Explain from the next graph the data regarding the demands from a certain product coming from 2 households (C_1 and C_2) and present them into a table:

*Find the total demand.

13. Find the weight of each in the final price of gasoline:

	lei	%
Production cost	1,05	
Profit	0,21	
Road tax	0,35	
Luxury tax	1,31	
Special tax	0,02	
VAT	0,56	
Total		100

WEDNESDAY, OCTOBER 07, 2009

ACTIVTY, NEEDS AND INTERESTS

PROBLEMS TO BE DISCUSSED:

- 2. Reply at the questions:
 - a) Is working, economic activity, an objective necessity?
 - b) What kind of links can we establish between desires and interests? What is the case with desires and purposes?
 - c) What will determine need's multiplication and diversity?

3. In which way laziness can be considered as a source for technological improvement?

1. The needs will be expressed in the wish of having: A) Objects

- B) Services
- C) Informations
- D) social recognition
- E) all of above
- F) none of them